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1 Introduction

Automation and offshoring are two of the most debated global developments
with potentially disruptive effects on the labour market and momentous implica-
tions for workers’ employment opportunities and wages. Understanding their
effects, their relative importance and their possible interactions is, therefore, of
preeminent relevance and, as such, has attracted a lot of research.1

The existing literature highlights that, from a country’s point of view, auto-
mation and offshoring may affect employment opportunities and wages in two
main ways. On the one hand, automating or offshoring some tasks implies that
these tasks are not performed by the country’s workers any longer so that the
demand for their services falls. This is the negative “substitution effect”, which
may cause employment and wages to fall. On the other hand, reallocating tasks
from the country’s workers to automated systems or foreign workers may
promote production efficiency, which in turn expands production activities
with a beneficial impact on employment opportunities and wages. This is
the positive “productivity effect”, which may cause employment and wages
to rise.

In the case of automation, most studies stress capital-labour substitution.2

This is of primary importance and particularly relevant for automation related
to the adoption of robots and machines in production. It may affect different
workers differently. With “skill-biased technological change” (SBTC), new tech-
nology complements workers with high skills. With “routine-biased technologi-
cal change” (RBTC), new technology crowds out workers from traditional
routine tasks while creating additional jobs involving new complex tasks (see
e.g. Acemoglu and Restrepo, 2018b, for a detailed discussion).

Differently from these studies, the present paper investigates the possible exis-
tence of an additional negative effect of automation on workers’ employment
opportunities and wages. This effect is related to what has been called the
“paradox of automation” (Bainbridge, 1983). The idea is that, as automation
intensifies, the efficient completion of related tasks increasingly requires human
operators with specialized knowledge of automated systems involving specific
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algorithms, software and machines. Hence, according to the paradox, the more
advanced an automated system is, the more crucial the contribution of the spe-
cialized human operator may end up being.3 The associated growing demand for
specialized knowledge is conducive to a form of workers’ specialization that
increasingly matters above and beyond what would be needed by the vertical
skill content of tasks or their degree of routineness. In this respect, by fostering
tasks’ horizontal knowledge differentiation, automation also demands workers’
horizontal skill differentiation. We call this “core-biased technological change”
(CBTC), whereby new technology requires workers with specialized knowledge
(“core competencies”) independently of them being high or low skilled, or their
tasks being more or less routine intensive.

Our investigation of the possible consequences of CBTC for the labor market
emphasizes the challenges workers and firms face in matching the formers’ hor-
izontally differentiated skills with the latters’ horizontally differentiated tasks in
the presence of search frictions and rising match assortativity due to automation
(see Shimer and Smith, 2000). In a perfectly competitive labor market, more
assortativity would increase the surplus of all equilibrium matches as these take
place only between “ideal” partners, that is, between workers and firms with per-
fectly matched skills and tasks. In contrast, with search costs not all matches nec-
essarily involve ideal partners as some firms or workers may find it optimal to
accept less-than-ideal counterparts (“mismatch”) in order to avoid incurring
the opportunity cost of additional search. When the “paradox of automation”
is at work, as automation proceeds the surplus of ideal matches increases relative
to that of less-than-ideal matches, amplifying the losses from mismatch and
making both firms and workers more selective in choosing their partners. As
selectivity increases, firms and workers become more willing to spend time search-
ing for better matches. As a result, unemployment duration rises, mismatch falls
and specialized knowledge concentrates more on the tasks specifically requiring it.

One could argue that a similar mechanism may be relevant also for offshoring
if interpreted as another form of technological change.4 For example, the more
sophisticated a country’s global value chains are, the more crucial may be the
contribution of specialized knowledge by the country’s workers.5 Management
studies emphasize what they call “offshoring management capability” (Mihalache
and Mihalache, 2020). According to Mukherjee, Gaur and Datta (2013), coor-
dination capabilities (e.g. those leveraging IT coordination applications for
enterprise resource planning or customer-relationship management software)
are important for creating value through offshoring because geographically dis-
persed knowledge needs to be transferred and integrated. Manning, Massini
and Lewin (2008) argue that, to use science and engineering talent at globally
dispersed locations, firms need capabilities such as recruiting, developing, and
retaining talent, coordinating globally dispersed innovation activities, and collab-
orating with external partners. Mukherjee et al. (2019) stress the role of contract
negotiation skills, the ability to monitor and evaluate the performance of suppli-
ers, or the knowledge of alternative supplier arrangements and their cost
structure.
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Whether the “paradox of automation” is of any practical relevance, and
whether something similar applies also to offshoring is, first of all, an empirical
issue. We look for traces of the paradox at the sector-occupation level.6 We
focus on 92 occupations at the 3-digit ISCO-88 level and 16 (out of 21)
sectors according to the NACE Rev.2 classification. To make sure that our
results are not driven by specific countries or institutional contexts, our dataset
covers 13 European countries in the period 1995−2010. We analyze the
impact of automation and offshoring on “selectivity” as measured by skill con-
centration, unemployment duration and educational mismatch. To this end,
our dataset combines data on employment from the European Labour Force
Survey (EU-LFS) with occupation-level measures of “automatability” as in Ace-
moglu and Autor (2011) and “offshorability” as in Blinder and Krueger (2013).
We find that over the period of observation, sectors with higher initial automat-
ability experienced a differential increase in selectivity. By contrast, we find that
sectors with higher initial offshorability experienced a differential decrease in
selectivity.

We argue that these findings are consistent with the “paradox of automation”
and CBTC in the case of automation, while they are inconsistent with something
similar happening in the case of offshoring. We spell out our argument through a
growth model that, beyond productivity and substitution effects, features search
frictions in the labor market and two-sided heterogeneity of horizontally differ-
entiated skills and tasks. Workers and firms in our model are risk-neutral and
maximize lifetime discounted utility in continuous time. They meet through a
random matching process governed by a canonical constant return to scale func-
tion based on one-to-one relations with congestion externalities for each task
(see Mortensen and Pissarides, 1994). For analytical transparency, workers’
skills and firms’ tasks are assumed to be uniformly and symmetrically distributed
around a circle describing the space of their heterogeneous characteristics. Due
to search frictions, workers and firms do not match perfectly, but instead
search and optimally accept less-than-ideal matches in an interval around their
ideal ones. “Mismatch” is measured by the distance between matched skills
and tasks along the circle and negatively affects match surplus. We use a numer-
ical implementation based on specific functional forms to show that the empirical
patterns we have uncovered in the data can be reproduced by our model as long
as match surplus is assumed to be: (i) log-submodular in mismatch and automa-
tion, so that matches at shorter distance have a comparative advantage in exploit-
ing automation; (ii) log-supermodular in mismatch and offshoring, so that
matches at longer distance have a comparative advantage in exploiting offshor-
ing; (iii) log-supermodular in automation and offshoring so that, for given mis-
match, the impact of more automation on match surplus is amplified when there
is more offshoring. When these conditions are met, the model predicts that more
selectivity is associated with less employment as firms and workers are willing to
search longer for the ideal counterpart. It therefore implies that automation and
offshoring have opposite effects on employment due to their opposite effects
on selectivity. While automation reduces employment by raising selectivity,
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offshoring increases employment by reducing selectivity. The model also predicts
that more selectivity is associated with more wage inequality between ideal and
less-than-ideal matches as the surplus of the former increases relative to the
surplus of the latter.

The rest of the chapter is organized as follows. Section 2 offers some anecdotal
examples of the “paradox of automation” and discusses survey evidence on spe-
cialization trends in occupations. Section 3 introduces the dataset and describes
the empirical analysis. Section 4 presents the model, discusses the conditions on
assortativity needed to make it consistent with the empirical findings of Section
3, and studies its implications for employment and wage inequality under those
conditions. Section 5 concludes.

2 Ironies of Automation and Skill Specialization

The notion of “core-biased technological change” (CBTC) emphasizes the pos-
itive impact that new technologies may have on the horizontal assortativity of
skills and tasks. This notion speaks to what was termed the “paradox of automa-
tion” around forty years ago by cognitive psychologist Lisanne Bainbridge in a
still influential paper titled Ironies of Automation (Bainbridge, 1983). Bain-
bridge’s idea is that, as automation intensifies, the efficient completion by
humans of tasks related to the automated systems increasingly requires workers
with specialized knowledge of the specific systems. As a result, automation
raises the assortativity between workers’ specialized skills and firms’ specific tasks.

In her paper, Bainbridge notes that the classic aim of automation is to replace
human manual control, planning and problem solving by automatic devices and
computers. Yet, this may have ironic implications:

[T]he more advanced a control system is, so the more crucial may be the
contribution of the human operator [as] the designer who tries to eliminate
the operator still leaves the operator to do the tasks which the designer
cannot think how to automate. [In this respect, there] are two general cat-
egories of task left for an operator in an automated system. He may be
expected to monitor that the automatic system is operating correctly, and
if it is not he may be expected to call a more experienced operator or to
take over himself. To take over and stabilize the process requires manual
control skills, to diagnose the fault as a basis for shut down or recovery
requires cognitive skills.

When called to intervene, a more experienced operator may in turn face similar
challenges, only at a higher level. In any case, relevant experience requires
“special training”. A traditional example is the flight deck (Malquist and Rapo-
port, 2021):

More automation should mean more training. Today’s highly automated
planes create surprises pilots aren’t familiar with. The humans in the
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cockpit need to be better prepared for the machine’s quirks. [. . .] Modern
jet aircraft developed using classic methods lead to scenarios that wait for
the right combination of events. Unlike legacy aircraft built using only
basic electrical and mechanical components, the automation in these
modern jets uses a complex series of situations to “decide” how to
perform. [. . .] In the case of the [Boeing] MAX crashes, pilots found them-
selves in confusing situations, i.e., the automation worked perfectly, just not
as expected. [. . .] Although these challenges can often be “designed out”,
pilots can’t wait for planes that are better-designed. They need to be
trained now to understand that an aircraft’s response depends on the com-
puter “process model”.

The training needed can be extremely specific in terms of “core competencies”
(Aviation Voice, 2008):

[Boeing and Airbus] have very different philosophies about their aircraft.
[. . .] Boeing has a traditional control wheel, whereas Airbus has a highly
automated system and a side stick. According to Airbus, the absence of
the larger yoke ensures much more comfortable flying. It also allows oper-
ating the array of computers easier with more space and one free hand.
The competitor states that the yoke is an essential tool to handle emergen-
cies. It does not prevent a pilot from overriding the autopilot if necessary
and allows for better coordination between the pilot and co-pilot.

Training in aviation is so specific that generally pilots must be “type-rated”, that
is, they must be certified with additional training beyond the scope of the initial
license and aircraft class training, tailored to the aircraft type they are asked to fly
(Aviation Voice, 2008):

Pilots type-rated on both Airbus A320 and Boeing 737 say that it took a
while for them to get used to a fundamentally different way to operate an
aircraft.

The general point is that, if an automated system has an error, the system will
multiply the error until the error is fixed or the system is shut down. Fixing
the error or shutting down may require system-specific experience. Both fixing
the error or shutting down may require that a human takes control who
knows immediately and exactly what to do. As the knowledge required is very
specific, the human holding it is not readily replaced with another human
without appropriate system-specific experience. While the need of all this may
be tragically self-evident in the case of a flying aircraft, it may be very important
also in other less dramatic situations (Kaufmann, 2012):

Imagine a fully automated production line that makes computer processors
that sell for $200. All the human operators have to do is to push a button,
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and the production system starts cranking out 2,400 finished products per
minute. [. . .] Imagine that a drill used to bore holes in the silicon wafer
becomes misaligned, and starts drilling microscopic holes through the
middle of the processor core. Every second the system keeps working, 40
chips are ruined. Assume each processor costs $20 in material costs—that
means the factory start losing $800 every second the error isn’t found.
Every minute the system keeps running, the company loses $48,000 in
raw materials. And that’s just the direct cost—if you take into account
that each processor would sell for $200, the company is losing $528,000
a minute: $48,000 in direct costs and $480,000 in opportunity cost. [. . .]
When an error happens, operators need to get involved quickly and flaw-
lessly—otherwise, the automated system will amplify the effects of the
error until it is fixed.

Having difficulty “finding the right skills or talent” or “filling jobs” is often
quoted as one of the main issues raised by employers. For example, the 2018
Talent Shortage Survey by Manpower Group (2018) highlights how talent
shortage has been increasing over time, leaving a growing number of jobs
unfilled all around the world.7 The shortage is strongly linked to technology,
but does not necessarily depend on a dearth of workers with higher education
(Manpower Group, 2018, p.6):

Most of the top ten in-demand roles today require post-secondary training
and not always a full university degree.[. . .] In the digital age, employment
will not always require a college degree, but will rely heavily on continual
skills development as even the most traditional roles are augmented with
new technology.

A wide range of jobs with different education and routine contents are affected
across sectors. Higher than average recruitment bottlenecks tend to be
reported in manufacturing, ICT and health care for jobs such as skilled
trades workers, machine operators, sales representatives, engineers, techni-
cians, ICT professionals, workers in marketing posts, drivers and office
support staff (Cedefop Eurofound, 2018).8 A concern for both firms and
workers is that retraining from a known to a different machine can be a
costly time-consuming process, making them cautious about potential mis-
match. This is consistent with evidence collected by Bartel, Ichniowski and
Shaw (2007) and Koren, Csillag and Köllo (2020), according to which
workers assigned to new machines or IT-enhanced capital equipment are
required to have “better” technical and problem-solving skills. These are
likely to be horizontally differentiated and acquired mostly through experience
as highlighted by Dauth et al. (2019).9 Black, Hasan and Koning (2020)
report survey evidence that the changing demand of skills has affected how
firms search for new hires, in particular through increased firm-driven search
for skilled workers.
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3 Empirical Evidence from Occupational Data

In this section, we look for evidence consistent with CBTC in occupational data.
In particular, we are interested in assessing whether and how more automation
and offshoring may lead to higher match selectivity, which we measure in
terms of longer unemployment duration, less mismatch, and more concentration
of specialized knowledge in specific tasks. While matched employer-employee
data with detailed information in skills and tasks would arguably be the most
natural setup for our investigation, occupational data have the advantage of
being available for several countries in a harmonized way, thus allowing us to
control for country-specific aspects.

3.1 Data and Variables

For our investigation we use occupational data on European countries extracted
from the European Labour Force Survey (hereafter EULFS). To include the
maximum number of available countries and keep a consistent classification of
occupations, we restrict our analysis to the years 1995−2010. This leads to a
sample of 13 countries with various labor market institutions and economic sit-
uations. The countries are: Austria, Belgium, Denmark, France, Germany,
Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, and the
United Kingdom.

We focus on 92 occupations at the 3-digit ISCO-88 level and 16 sectors
according to the NACE Rev.2 classification. To ensure the stability of the
sector definition across years, we group these 16 sectors into 11 sectors.10 We
aggregate worker-level observations into country × sector × occupation × year
cells. For each country, sector and occupation we have information on employ-
ment, number of employees, number of hours worked and number of unem-
ployed workers (see Appendix A for more details on the data).

We exploit long-differences between 1995 and 2010 assuming that automa-
tion and offshoring shocks materialize between these two dates as documented
in other studies.11 Henceforth, the long-difference of any variable Y between
1995 and 2010 will be simply denoted ΔY.

3.1.1 Measuring Automation and Offshorability

The EULFS is merged with data on occupations’ exposure to automation
(“automatability”) and to offshoring (“offshorability”). We use these variables
to infer actual automation and offshoring in the subsequent years, which we
do not observe. The underlying idea is that automation and offshoring are two
general long-run trends whose effects can be assessed in terms of the differential
exposure of different occupations to them.

To measure the “automatability” of an occupation we use its Routine Task
Intensity index (RTI) as computed by Acemoglu and Autor (2011), which has
been widely used in previous studies (see among many other Autor, Levy and
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Murnane, 2003; Autor and Dorn, 2013; Goos, Manning and Salomons, 2014).12

The RTI builds on information about the task content of occupations available
from the Occupational Information Network (ONET). We use a crosswalk
to go from the SOC 2000 classification used in ONET to the 4-digit ISCO-
88 classification before aggregating to the 3-digit ISCO-88 classification (see
Appendix A for additional details). Comparing our RTI measure with an alterna-
tive measure of automatibility constructed by Frey and Osbourne (2013) reveals
a large positive correlation between them with only few exceptions for specific
occupations.13

To measure the “offshorability” of an occupation we adopt the index devel-
oped by Blinder and Krueger (2013) (hereafter BK). This index builds on
questionnaires as well as qualitative observations, and it is constructed by
professional coders based on an occupational classification of workers. Offshor-
abilty is then reported on a 4-step qualitative scale from Highly Non-Offshorable
(1) to Highly Offshorable (4).14 A different measure is provided by Acemoglu
and Autor (2011), who instead build a quantitative index based on aggregating
several ONET indicators. While correlations between these different measures
are mostly positive (see Appendix A for additional details), we use the BK index
as our benchmark measure of offshorability as Goos, Manning, Salomons (2014)
find that this index is more reliable when compared with actual offshoring
measures.15

While both automation and offshoring may displace workers, it is important
to note that they are conceptually quite different. The likelihood of automa-
tion is linked to the routineness of a task, hence to the possibility that the task
can be performed algorithmically by a computer or a robot. By contrast, off-
shorability à la Blinder and Krueger (2013) refers to the ability to perform
one’s work duties, for the same employer and customers, in a foreign
country, even though the supply of the good or the service is still based in
the home country. Accordingly, while the correlation between our measures
of automatability and offshorability is positive, there are important exceptions
across occupations (see column 4 and 5 in Table 4.1 and Appendix A for a full
picture).

3.1.2 Measuring Selectivity

We proxy “selectivity” in terms of unemployment duration, mismatch and concen-
tration of specialized knowledge in specific tasks. We capture the last by the con-
centration of occupations’ employment across sectors. In the wake of Costinot and
Vogel (2010) the underlying idea is that, while a sector may cover a rich menu of
occupations, these include a submenu of “core” occupations that are dispropor-
tionately concentrated in the sector. While the change in concentration is likely
determined by many concurrent factors, more concentration triggered by
higher automatability or offshorability would still be consistent with the channel
of selectivity we are looking for. Specifically, let O = {o1; . . . ; o92} be the set of
occupations, K = {k1; . . . ; k11} be the set of sectors and I = {i1; . . . ; i13} be the
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set of countries in our sample. Consider occupation o E O in sector k E K of
country i E I with employment denoted by Loki. Our measure of occupation o’s
employment concentration across sectors k E K in country i is given by the Her-
findhal index

SSOoi =
E
kEK

LokiE
kEKLoki

( )2

; (1)

where SSO is a mnemonic for “sectoral selectivity of occupation”. Two remarks
on eq. (1) are in order. First, as each occupation is not present in every sector, a
key feature of SSO is that it is not standardized to account for the number of
sectors used in the estimation. To understand this point, assume, for instance,
that an occupation is equally observed in five different sectors in 1995, but
disappears from one of the sectors in 2010 with previous employment from
this sector evenly reallocated to the other four sectors. The distribution of
the occupation’s employment across sectors is, therefore, uniform both in
1995 and in 2010. A standardized Herfindahl index would be equal to zero
in both cases, implying that no change in selectivity would be detected
between 1995 and 2010 for this occupation. Second, high SSO implies that
few sectors account for a large share of the occupation’s employment. There-
fore, an increase in SSO corresponds to an increase in concentration and thus
more selectivity.

Our second measure of selectivity is based on the consideration that, if either
automation or offshoring make specialized skills more salient, then firms may be
willing to search longer for the right worker. We use unemployment duration as
a proxy for workers’ and firms’ willingness to wait. This is computed at the occu-
pation level by associating unemployed workers to their last occupation. Given
the small number of observations in any given cell, we use occupations defined
by the 2-digit ISCO classification. Moreover, when using this selectivity
measure, we have to exclude France and the Netherlands from the sample due
to data availability constraints.

Finally, our third measure of selectivity is based on the consideration that, if
either automation or offshoring make specialized skills more salient, then the
mismatch between workers’ skills and firms’ tasks should decrease. Therefore
we use educational mismatch as a proxy for the extent to which workers’ skills
in given occupations are aligned with the occupations’ task content. We consider
both over-education and under-education by comparing each worker’s years of
education with those of her or his peers in a given occupation, sector and
country at the time of observation. A worker is considered as over-educated
when the worker’s educational level is above the average of the worker’s 10-
year cohort by more than 2 standard deviations; vice versa, a worker is consid-
ered as under-educated when the worker’s educational level is below the
average of her or his 10-year cohort by more than 2 standard deviations (see
e.g. Hartog, 2000, for a similar definition). Also in this case, given the small
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number of observations in any given cell, we use occupations defined by the 2-
digit ISCO classification. However, poor data availability for educational vari-
ables restricts our analysis to the years from 1998 to 2010. We then gauge
changes in selectivity from changes in the shares of over- and under-educated
workers in each occupation × industry × country cell. The underlying idea is
that, if automation or offshoring makes firms more selective, we may observe
a fall in under-education and possibly a rise in over-education among matched
workers in more exposed sectors.

3.2 Descriptive Statistics

Table 4.1 presents descriptive statistics on the occupational characteristics aggre-
gated at the 2-digit level for clarity. Occupations are ranked from the least to the
most “automatable” (i.e. routine-intensive). Column 1 displays the percentage
point change in the share of hours worked between 1995 and 2010. Overall,
the change is smaller (or negative) for occupations that are more “automatable”.
Among the ten most automatable occupations only Customer Service Clerks (42)
and Sales and Services Elementary (91) do not exhibit a fall in the share of hours
worked. On the contrary, the share of hours worked in occupations with a low
routine content systematically increases. This illustrates the impact of routine-
biased technological change on employment trends. Column 2 reports the
change in unemployment. The ranking is less clear but the majority of low-RTI
occupations experienced a decrease or stability in their unemployment rate.

3.3 Automation, Offshoring and Employment

Figure 4.1 looks at the direct effects of automatability on employment and
its interplay with offshorability. We collapse observations to the occupation
level and divide the 92 occupations into two groups according to median
offshorability.16

Overall (dashed line), occupations with a low share of automatable tasks in
1995 experience an increase in total hours worked in subsequent years. Vice
versa, occupations with a high share of automatable tasks in 1995 experience a
decrease in total hours worked in subsequent years.

When considering the interaction with offshorability, a more nuanced pattern
emerges. While the negative relationship between automatability and employ-
ment is confirmed for highly offshorable occupations (solid black line), the
observed change in hours worked in occupations with low offshorability (solid
grey line) is unrelated to the automatability of their tasks.17

3.4 Automation, Offshoring and Selectivity

To assess whether selectivity has any role to play in explaining the relative
decrease in hours worked in occupations more exposed to automation and

91 Consequences of Automation and Offshoring 91



Table 4.1 Descriptive Statistics: Occupations

Occupations ranked by Automation Probability Δ Share of
Hours

Δ Unemployment
Rate

Routine Task
Intensity

Offshorability
(BK)

Rank
Offshorability

(1) (2) (3) (4) (5)

Corporate managers (12) 0.10 -0.03 -1.83 -0.19 10
Other professionals (24) 0.43 0.18 -1.71 0.09 11
General managers (13) 0.20 0.08 -1.60 -0.59 8
Physical, mathematical, and engineering

professionals (21)
0.40 -0.45 -1.33 0.96 17

Life science and health professionals (22) 0.02 -0.46 -1.23 -0.87 6
Life science and health associate professionals (32) 0.63 -0.01 -0.87 -0.83 7
Other associate professionals (34) 0.39 0.28 -0.78 0.48 13
Physical and engineering science associate profes-

sionals (31)
0.12 0.01 -0.05 0.61 15

Personal and protective service workers (51) 0.74 0.48 0.17 -0.94 4
Models, salespersons and demonstrators (52) -0.57 0.30 0.21 -0.95 1
Office clerks (41) -0.26 -0.33 0.27 1.56 19
Extraction and building trades workers (71) -0.43 0.30 0.32 -0.95 3
Metal, machinery and related trade workers (72) -0.66 -0.07 0.39 -0.56 9
Customer services clerks (42) 0.02 0.60 0.68 0.56 14
Sales and services elementary occupations (91) 0.46 0.32 0.95 -0.91 5
Laborers in mining. construction. manufacturing and

transport (93)
-0.10 0.08 1.02 0.43 12

Precision. handicraft. printing and related trades
workers (73)

-0.43 -0.63 1.03 1.86 20

Drivers and mobile-plant operators (83) -0.07 0.17 1.19 -0.95 2
Stationary-plant and related operators (81) -0.22 -0.01 1.19 2.31 21
Other craft and related trade workers (74) -1.52 -0.11 1.46 1.02 18
Machine operators and assemblers (82) -1.31 0.03 1.48 0.93 16

Occupations are ranked from least to most routine-intensive. Δ Share of Hours and Δ Unemployment Rate is the change in hours worked and the
unemployment rate between 1995 and 2010 respectively. Data is from the EULFS. Routine Task Intensity is taken from Acemoglu and Autor (2011)
and Offshorability from Blinder and Krueger (2013). Both are standardized to have a mean of 0 and a standard deviation of 1.
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offshoring documented in Figure 4.1, we estimate the following equation:

DYoki = b1RTIo + b2Offshoro + b3RTIo XOffshoro + Z '
okiC+ moi + Eoki: (2)

On the left hand side, the dependent variable ΔYoki corresponds to the long-term
change in selectivity as captured by our three measures. For SSO and unemploy-
ment duration, ΔYoki is the difference between 1995 and 2010, while for under-
education or over-education, ΔYoki is the difference between 1998 and 2010.
This is due to the limited availability of educational data before 1998 as
already mentioned. As SSO measures the concentration of occupation o across
sectors k, the sample is aggregated at the occupation×country level. On the
right hand side of (2), the explanatory variables RTIo and Offshoro are the
indices of automatability and offshorability respectively, while Zoi is a set of
control variables including the initial values of selectivity and of the employment
share of the cell. We also include occupation×country fixed effects (μoi) except
when the dependent variable is SSO, in which case we include country fixed
effects (μi). As the indices of automatability and offshorability are standardized
to have a mean of 0 and a standard deviation of 1, β1 can be interpreted as the
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Figure 4.1 The Impact of Routineness and Offshorability on Labour Hours
Notes: Figure 4.1 plots the change in hours worked from 1995 to 2010 against the occupational
rank of routineness. Data on employment is aggregated at the occupation level. Routineness of
the occupation is taken from Acemoglu and Autor (2011) and data on offshorability comes from
Blinder and Krueger (2013). Occupations belong to the low or high offshorability sample if they
are below or above the median offshorability. Occupations with below- (above-) median off-
shorability are displayed in grey dots (black dots) with the corresponding linear sample fit
plotted as the solid grey (black) line. The overall sample fit is plotted as a dashed line.
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effect of automatability when offshorability is equal to its average value. Analo-
gously, β2 can be interpreted as the effect of offshorability when automatability
is equal to its average value. Moreover, the effect of automatability when offshor-
ability is one standard deviation larger than the average is given by β1+β3. This is
also the effect of offshorability when automatability is one standard deviation
larger than the average. Unless specified otherwise, we comment on the effect
of a variable when the other is at its average value.

The corresponding estimates are reported in Table 4.2. In this table, column
1 reports the results for SSO. It shows that occupations with higher initial auto-
matability become more selective along the period when offshorability is at its
average value. The coefficient is, however, imprecisely estimated and its p-
value is slightly above the conventional levels of statistical significance. The
effect of offshoring when automatability is at its average value is, instead, pre-
cisely estimated and negative. Automation and offshoring have thus opposite
effects on the concentration of occupations across sectors. Though the trend
of increasing concentration may be driven by other factors, the pattern is in
line with an increase in selectivity for occupations more exposed to automation
and a decrease in selectivity for occupations more exposed to offshoring. More-
over, as the interaction term between RTIo and Offshoro is positive and signifi-
cant, the increase in concentration for occupations more exposed to automation
is more pronounced for those that are also more exposed to offshoring. For
instance, when offshorability is larger than its average value by one standard
deviation, the effect of automatability on SSO is almost twice as large and sig-
nificantly different from 0 (β1+ β3 = 0.16 with p−value = 0.016). Column 2
reports the results for unemployment duration. We observe that the occupa-
tions more exposed to automation experience a larger increase in unemploy-
ment duration when offshorability is at its average value. This effect is
reinforced for occupations that have higher degrees of offshorability. On the
contrary, the effect of offshorability on unemployment duration is negative
and imprecisely estimated. This effect becomes more negative as RTI decreases
(i.e. as automatability decreases). Finally, columns 3 and 4 report the results for
educational mismatch, looking at the shares of under- and over-educated
workers separately. Column 4 shows that under-education falls in more auto-
matable occupations and increases in more offshorable occupations. The inter-
action between automation and offshoring is negative, in line with the results in
columns 1 and 2. By contrast, in column 3 over-education reacts in the opposite
direction.

Overall, this empirical investigation reveals empirical patterns in line with
increased selectivity in occupations exposed to automation and decreased selec-
tivity in occupations exposed to offshoring. In particular, the patterns observed
for automation are in line with the automation paradox, first highlighted by
Bainbridge (1983) and discussed in Section 2. The empirical investigation also
reveals that the interaction with offshorability generally reinforces the selectivity
induced by automatability.18
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Table 4.2 Selectivity, Automation and Offshoring.

(1) (2) (3) (4)
Δln(SSO) Δln(Unemp. duration) ΔUnder ed. % ΔOver ed. %

RTI 0.0802 0.0413* -0.00439*** 0.00336***
(0.0506) (0.0244) (0.000685) (0.000756)

Offshor. -0.123** -0.0300 0.00274*** -0.00207**
(0.0525) (0.0328) (0.000836) (0.000923)

RTI × Offshor. 0.0792* 0.0558* -0.00236*** -0.00107
(0.0473) (0.0332) (0.000729) (0.000753)

Observations 1,063 905 1,915 1,915
R-squared 0.148 0.189 0.172 0.246
Fixed effects Country Country-Industry Country-Industry Country-Industry

The table reports coefficients of estimating (2). The dependent variable is our proxy for selectivity. Δln(SSO) is the log change of the Sectoral Selectivity of an
Occupation calculated as the Herfindahl index of occupational employment shares across industries in a country. In Column 1, the dataset is aggregated at the
country × occupation level. It is aggregated at the country × sector × occupation level in columns 2 to 4. RTI is routine-task intensity as in Acemoglu and
Autor (2011) and Offshor. measures the offshorability of an occupation as in Blinder and Krueger (2013). Standard errors in parentheses are clustered at the
occupation level in column 1 and at the country × occupation level in columns 2 to 4.*** p < 0.01, ** p < 0.05, * p < 0.1.
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4 A Search Model with Core-Biased Technological Change

In this section we rationalize the empirical findings of the previous section in
terms of a simple labor-market sorting model that explains how automation
and offshoring can affect match selectivity and employment as observed in the
data.

Following Becker (1973) and Shimer and Smith (2000), the model relies on
two key elements. The first is assortativity between firms’ tasks and workers’ skills
required to perform those tasks, which implies that there exist “ideal” pairings of
skill and tasks producing maximum match surplus.19 The second element is
search frictions, which implies that, as the ideal pairings cannot be immediately
located, firms and workers sort according to acceptance regions around their
ideal matches. The smaller the acceptance regions, the more selective workers
and firms are. More selectivity implies less mismatch between tasks and skills,
and more concentration of specialized knowledge in specific tasks. It also
implies longer unemployment duration as workers and firms are more willing
to forego less-than-ideal matches and wait for alternative future matches closer
to the ideal ones. The degree of selectivity depends on the differential surplus
of ideal matches with respect to less-than-ideal ones. In particular, anything
that increases the differential surplus raises selectivity. Vice versa, anything that
decreases the differential surplus reduces selectivity.

We show that calibrating the way automation and offshoring affect match
surplus allows the model to replicate the empirical patterns highlighted in the pre-
vious section. Specifically, increased selectivity in occupations exposed to automa-
tion and decreased selectivity in occupations exposed to offshoring require the
differential surplus of ideal matches with respect to less-than-ideal ones to be
raised by automation and reduced by offshoring. Moreover, the observation
that the interaction with offshorability generally reinforces the effect of automat-
ability requires the positive impact of automation on the differential surplus to be
enhanced by offshoring. As we will see, these requirements discipline the assorta-
tivity properties of the production process.

4.1 Matching, Search and Heterogeneity

There are two types of heterogeneous agents: workers and firms. Time is contin-
uous, and in each moment the timing of events is as follows. Firms with hetero-
geneous tasks decide whether or not to enter the labor market and randomly
meet one-to-one with workers with heterogeneous skills. After observing their
respective tasks or skills, each firm and the worker it has met decide whether
to match or not. If they decide to match, they bargain on the wage as a fraction
of the match surplus according to the Nash protocol. The steady state pure strat-
egy of each firm or worker is to decide which workers or firms to match with,
taking the strategies of all other firms and workers as given.

All agents are risk-neutral, infinitely lived and maximize the present value of
their future income streams, discounted by the common discount factor ρ.
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Income streams are determined by the match surplus generated by firms and
workers through production. Horizontal differentiation in workers’ skills and
firms’ tasks is introduced in terms of different addresses along a characteristics’
space represented by a unit circle. Along the unit circle, there is an exogenous
measure of domestic workers L > 0 with skills indexed x E [0, 1] clockwise
from noon (“skill address”). The distribution of skills across addresses is deter-
mined by a uniform p.d.f. gw(x). Given unit support, there are thus L workers
at each address. Likewise, there is a measure of firms with tasks indexed y E
[0, 1] clockwise from noon (“task address”). While the measure of workers L
is exogenously given, the measure of firms is endogenously determined by free
entry and exit. The distribution of tasks is also governed by a uniform p.d.f.
gf (y). Uniformity is assumed for simplicity as it will lead to the same equilibrium
outcome for all addresses.

When a worker with address x and a firm with address y are matched, they
produce joint surplus s(x, y, A, Ω). This surplus depends on the degree of auto-
mation A, the extent of offshoring Ω and the distance between the addresses of
skill x and task y:

d(x; y) = min x - y + 1; y - x[ ] (3)

where the min function selects the shorter arc distance of clockwise and counter-
clockwise travels between x and y along the unit circle. An “ideal”match happens
for x = y and thus implies d(x, y) = 0. We will focus on the symmetric pure strat-
egy steady state with the acceptance region given by the interval [−d*, d*] cen-
tered around the ideal match d = 0 for all x E [0, 1] and y E [0, 1].
Accordingly, we will leave the dependence of d on x and y implicit, and simply
use s(d, A, Ω) to denote the match surplus at distance d with degree of automa-
tion A and extent of offshoring Ω. As the acceptance interval has measure 2d*, we
will use 1/d* as the model’s index of “selectivity”.

All agents know their own type and the types of all potential partners they
meet. However, due to search frictions, domestic firms and workers are not nec-
essarily all paired in a productive match.20 Firms can be either producing (P) or
vacant (V). Workers can be either employed (E), or unemployed (U). By defini-
tion, the sum of employed and unemployed workers equals the labour force,
E +U = L, and we set L = 1 by choice of units. Hence, E + U = 1 holds both
in the aggregate and for each address.

Only vacant firms and unemployed workers engage in search. Meeting rates
are set according to a standard random search setup featuring Poisson distributed
meeting intervals. We adopt a linear matching technology described by a homo-
geneous-of-degree-one Cobb-Douglas matching function M(U, V) = WUξV1−ξ,
where W is matching efficiency, U is unemployment, V are vacancies and ξ E
(0, 1) is the elasticity of new matches to unemployment.21 In this setup the
Poisson arrival rate can be derived as a function of aggregate labor market tight-
ness V/U. We can then define qv = M(U, V)/V = W(U/V)ξ as the rate at which
vacant firms meet unemployed workers and qu = M(U, V)/U = W(V/U)1−ξ as the
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rate at which unemployed workers meet vacancies. Matches can be destroyed by
separation shocks, which we assume to happen with per-period probability δ E
(0, 1).

Firms face a cost c > 0 of maintaining a job either filled or vacant paid in units
of the final good. Match surplus is shared according to the Nash bargaining solu-
tion with worker bargaining weight α E (0, 1). We impose zero outside options
for both workers and firms by normalizing the unemployed workers’ and vacant
firms’ income to 0.22

The equilibrium of the model is determined as follows. To avoid cluttering the
notation, we leave the dependence of variables on automation and offshoring
implicit for now. A worker’s discounted value of being employed ve(d) equals
the current wage plus the option value of the potential future loss from unem-
ployment:

rve(d) = w(d) - d
(
ve(d) - vu

)
: (4)

Given that unemployed workers’ income is normalized to 0, a worker’s dis-
counted value of being unemployed vu equals the option value of the potential
future gain from employment:

rvu = 2qu

{ d*

0

(
ve(z) - vu

)
dz; (5)

which takes into account that an unemployed worker meets a vacancy at endog-
enous rate qu and converts the meeting into a job if the worker’s type falls in the
acceptance interval of measure 2d* centered at d = 0. The discounted value of a
filled vacancy vp(d) equals what is left of the match surplus after the wage w(d)
and the maintenance cost c have been paid plus the option value of the potential
future loss from exogenous separation at rate δ:

rvp(d) =
(
s(d) - w(d) - c

)
- d vp(d) - vv
( )

(6)

The value of an unfilled vacancy vv satisfies

rvv = -c + 2qv

{ d*

0

vp(z) - vv
( )

dz; (7)

where the right-hand side corresponds to the option value of filling the vacancy
at endogenous rate qv in the future net of the maintenance cost c.

The set of equilibrium conditions is then completed by the Nash bargaining
rule

1- α( )
(
ve(d) - vu

)
= α vp(d) - vv

( )
(8)

together with the free entry condition for the value of a vacancy (vv = 0), the zero
cutoff value condition for a filled vacancy associated with maximum mismatch d*
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(vp(d*) = 0), and the steady state flow condition for employment

qu =
dE

2d* 1- E( ) : (9)

The last condition requires job destruction δE to be exactly offset by job creation
2qud*(1 − E) as an unemployed worker meets a vacancy at rate qu and matches
with the corresponding firm at a rate given by the ratio between the measures
of the acceptance interval (equal to 2d*) and of the characteristic space (equal
to 1).

Using the free entry and zero cutoff conditions, the set of equilibrium condi-
tions can be reduced to a system of the two equations,

1- α( ) 2W
1

1- x qu( )- x
1-x

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

{ d*

0

s(z)dz = c (10)

and

1- α( ) d+ r+ 2W
1

1- x qu( )- x
1-x

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

s(d*) = c; (11)

in employment E and maximum mismatch d* with match surplus s(d) and
meeting rate qu given by (9).23 Solving this system gives the equilibrium
values of E and d*, which can then be used to evaluate the equilibrium wage
of domestic workers as follows:

w(d) = α d+ r+ 2qu( )
d+ r+ 2 1- α( )W

1

1- x qu( )- x
1-x + 2αqu

s(d): (12)

4.2 Automation, Offshoring and Assortativity

Having laid out the search model with two-sided heterogeneity, we can now
discuss how assortativity should be affected by automation and offshoring for
the model’s predictions to be consistent with the empirical patterns discussed
in Section 2 and highlighted in Section 3. To this aim we make the dependence
of match surplus s(d) on automation and offshoring explicit by rewriting it as
s(d, A, Ω).

There are three requirements that the model’s predictions should fullfill in
order to be in line with the empirical patterns. First, the differential surplus of
ideal matches with respect to less-than-ideal ones should be increased by automa-
tion. Second, the differential surplus should be decreased by offshoring. Third
and last, the positive impact of automation on the differential surplus should
be reinforced by offshoring.

The first requirement is fullfilled by the model’s predictions if match surplus
s(d, A, Ω) is log-submodular in d and A. Analogously, the second requirement
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is fulfilled if match surplus s(d, A, Ω) is log-supermodular in d and Ω. In words,
better matches (i.e. matches at smaller distance d) have a comparative advantage
in exploiting automation, whereas worse matches (i.e. matches at longer distance
d) have a comparative advantage in exploiting offshoring. The third and last
requirement is met if match surplus s(d, A, Ω) is log-supermodular in A and
Ω. In words, matches with a higher degree of automation have a comparative
advantage in exploiting offshoring, and vice versa matches with a larger extent
of offshoring have a comparative advantage in exploiting automation. Note
that log-submodularity in A and d implies that, as automation proceeds (larger
A), workers and firms attribute increasingly higher value to ideal matches relative
to less-than-ideal ones. This is what we call “core-biased technological change”
(CBTC).

We show that these assumptions on log-modularity allow the model to repro-
duce the observed empirical patterns through a numerical implementation based
on a specific microfounded functional form for match surplus s(d, A, Ω).

4.3 A Simple Numerical Example

Assume that production by matched worker x and firm y takes place according to
a constant return to scale Cobb-Douglas production function employing capital
and labor as inputs with total factor productivity B > 0 and capital share β E (0, 1).
Output is sold in a perfectly competitive product market at a given price normal-
ized to unity. The worker’s productivity is determined by match distance d(x, y),
the degree of automation A and the extent of offshoring Ω. Leaving again the
dependence of d on x and y implicit, we use L(d, A, Ω) to denote such produc-
tivity, which corresponds also to the worker’s efficiency units of labor as the
worker is assumed to supply one unit of labor inelastically. The corresponding
capital services can be rented in a perfectly competitive capital market at rental
rate ρ > 0. Match surplus is then obtained by subtracting capital services from pro-
duction. Given perfect competition, capital services are related to L(d, A, Ω) by
the firm’s profit maximizing condition that the value of the marginal productivity
of capital equals its rental rate. As a result, match surplus evaluates to:

s(d;A;O) = FB
1

1- bL(d;A;O); (13)

with bundling parameter F - 1- b( ) b=r( ) b
1-b.

Each task consists of subtasks that are differentiated over a two-dimensional
continuum in terms of their “automatability” and “offshorability”, inversely mea-
sured by indices a E [0, 1] and ω E [0, 1] respectively. The two-dimensional rep-
resentation captures the fact that automatability and offshorability are
conceptually and empirically quite different as highlighted in Section 3.1.1.
The worker’s productivity in performing a subtask with automatability a and
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offshorability ω is given by:

l(d; a;o) = Fao- 1

2
gaa + goo( )d; (14)

with F > 0. According to (14), in the absence of mismatch (d = 0), the worker is
more productive in subtasks with low automatability (large a) and low offshorabil-
ity (large ω). Crucially, in the presence of mismatch (d > 0), for given d, automat-
ability and offshorability affect the mismatch penalty γaa+ γωω, where γa and γω are
fixed parameters whose signs will play a crucial role in what follows.

The firm first decides which subtasks to automate or offshore; it then looks for
a worker whom to assign the remaining tasks to. Given (14), the firm has a stron-
ger incentive to automate subtasks with low a and to offshore subtasks with low
ω. Hence, if there are costs of automation and offshoring and these are an
increasing function of the measure (“number”) of subtasks that are automated
and offshored, there will exist thresholds of automatability A E [0, 1] and off-
shoring Ω E [0, 1] such that subtasks (a, ω) with a E [0, A] are automated, sub-
tasks with ω E [0, Ω] are offshored, and subtasks with a E [0, A] and ω E [0, Ω]
are both automated and offshored. For the remaining tasks with a E [A, 1] and ω
E [Ω, 1] the firm searches for a worker.24

The productivity of a matched worker with skill at distance d from the firm’s
task can then be evaluated by integrating (14) with respect to a and ω with a E
[A, 1] and ω E [Ω, 1] to obtain:

L(d;A;O) = 1-A( ) 1- O( )
1

4
F 1+A( ) 1+ O( ) - 1

4
ga 1+A( ) + go 1+ O( )[ ]d

{ }
;

(15)

where the term (1−A)(1−Ω) outside the curly brackets is the measure
(“number”) of subtasks performed by the worker as they are neither automated
nor offshored (“extensive margin”), while the term inside the curly brackets is
the worker’s average productivity across these subtasks (“intensive margin”).
When more subtasks are automated (larger A) or offshored (large Ω), there
are three effects on the matched worker’s productivity (15). First, the extensive
margin shrinks as the worker is assigned fewer subtasks. This is the “substitution
effect”. Second, the productivity of the ideal match (d = 0) increases as the
matched worker can specialize in subtasks with higher a or higher ω in which
the worker is more productive. This is the “productivity effect”. Third, the pro-
ductivity of less-than-ideal matches (d > 0) increases or decreases relative to the
ideal match (d = 0) depending on the signs of γa and γω. This is the “mismatch
penalty effect”.

The sign of the mismatch penalty effect is determined by the assumptions
on the log-modularity of labor productivity L(d, A, Ω) and thus of match
surplus s(d, A, Ω), given that by (13) the latter inherits the log-modularity
properties of the former. In particular, L(d, A, Ω)—and thus s(d, A, Ω)—is
log-submodular in A and d if and only if, for all d '

> d and A'
> A, we have
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s(d '
, A'

)/s(d, A'
)<s(d '

, A)/s(d, A), which is the case for γω < 0. Analogously,
L(d, A, Ω)—and thus s(d, A, Ω)—is log-supermodular in Ω and d if and only
if, for all d '

> d and Ω
'
> Ω, we have s(d '

, Ω
'
)/s(d, Ω'

)>s(d '
, Ω)/s(d, Ω), which

is the case for γa > 0. Moreover, for γω < 0 and γa > 0, L(d, A, Ω)—and thus
s(d, A, Ω)—is also log-supermodular in A and Ω.

Figures 4.2, 4.3 and 4.4 provide graphical representations of the effects of
automation and offshoring on the theoretical correlates of our three measures
of selectivity. Parameter values are drawn from the literature except for those
of the mismatch penalty parameters and productivity of the optimal match,
which we treat as free parameters chosen in order to deliver empirically relevant
equilibrium rates of unemployment between around 2% and 7%.25 The concen-
tration of occupations’ employment across sectors is proxied in the model by the
Herfindahl index of concentration of skills’s employment (in efficiency units)
across tasks in the acceptance interval:

H = 1

2

{ d*

0

L(z;A;O)[ ]2dz
{ d*

0

L(z;A;O)dz
[ ]2 :

Unemployment duration is computed as the inverse of the rate qu at which
unemployed workers meet vacancies. Mismatch is measured by the length d*

of (half) the acceptance interval. Figures 4.2, 4.3 and 4.4 then show that, for
the chosen parameter values, selectivity is an increasing function of automation
(left panels) and a decreasing function of offshoring (right panels), no matter
whether we measure selectivity in terms of employment concentration,
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Figure 4.2 Employment Concentration. This figure plots simulated employment
concentration over a range of automation A on the x-axis for Ω = 0.05
(dashed) and Ω = 0.2 (solid) in the left panel and over a range of
offshoring Ω on the x-axis for A = 0.05 (dashed) and A = 0.2 (solid)
in the right panel. Simulations are based on the system of equations
(10)–(11) and parameters as specified in Table 4.C1.
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unemployment duration and mismatch. They confirm that our model is able to
qualitatively reproduce the empirical patterns we uncovered in the data.26

The parametrized model can then be used to investigate how automation and
offshoring may affect workers’ employment opportunities and wages, which we
do not observe in the data. The results of this investigation, corresponding to
the effects on selectivity reported in the previous figures, are shown in Figure
4.5 for employment and Figure 4.6 for wages. Figure 4.5 shows that, for the
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Figure 4.4 Mismatch. This figure plots simulated mismatch d* over a range of automation
A on the x-axis for Ω = 0.05 (dashed) and Ω = 0.2 (solid) in the left panel
and over a range of offshoring Ω on the x-axis for A = 0.05 (dashed) and
A = 0.2 (solid) in the right panel. Simulations are based on the system of
equations (10)–(11) and parameters as specified in Table 4.C1.
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Figure 4.3 Unemployment Duration. This figure plots simulated unemployment
duration over a range of automation A on the x-axis for Ω = 0.05
(dashed) and Ω = 0.2 (solid) in the left panel and over a range of
offshoring on the x-axis for A = 0.05 (dashed) and A = 0.2 (solid) in the
right panel. Simulations are based on the system of equations (10)–(11)
and parameters as specified in Table 4.C1.
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chosen parameter values, equilibrium employment E is a decreasing function of
automation A (left panel) and an increasing function of offshoring (right panel).
As for interactions, the figure reveals that employment is log-supermodular in
automation and offshoring: the negative impact of automation on employment
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Figure 4.5 Employment. This figure plots simulated employment rates over a range
of automation A on the x-axis for Ω = 0.05 (dashed) and Ω = 0.2 (solid) in
the left panel and over a range of offshoring Ω on the x-axis for A = 0.05
(dashed) and A = 0.2 (solid) in the right panel. Simulations are based
on the system of equations (10)–(11) and parameters as specified in
Table 4.C1.
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Figure 4.6 Relative Wages of Best vs. Worst Match. This figure plots of the wages of
the best possible match (d = 0) relative to the worst possible match (d = d*)
over a range of automation A on the x-axis for Ω = 0.05 (dashed) and Ω =
0.2 (solid) in the left panel and over a range of offshoring Ω on the x-axis
forA = 0.05 (dashed) andA = 0.2 (solid) in the right panel. Simulations are
based on the system of equations (10)–(11) with wages computed as in
(12) and parameters as specified in Table 4.C1.
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is stronger when there is more offshoring.27 Figure 4.6 shows that automation
increases wage inequality between the best (d = 0) and worst (d = d*)
matches, especially when there is more offshoring.28

To summarize, for standard parameter values drawn from the literature, if
better matches between firms and workers have a comparative advantage in
exploiting automation, our model reproduces the observed effects of automation
and offshoring on our three measures of selectivity. The model then implies that
automation reduces employment by increasing workers’ and firms’ selectivity. If
worse matches between firms and workers have a comparative advantage in
exploiting offshoring, it also predicts that offshoring raises employment by
decreasing workers’ and firms’ selectivity. Lastly, if matches with a higher
degree of automation have a comparative advantage in exploiting offshoring,
the model predicts that offshorability reinforces the impact of automation.
These predictions are consistent with the automation paradox discussed in
Section 2 and what we called “core biased technological change”.

5 Conclusion

Automation and offshoring may affect a country’s workers employment opportu-
nities and wages in two main ways. As some tasks are automated or offshored,
these tasks are not performed by the country’s workers any longer and the
demand for their services falls. This is the negative “substitution effect”, which
leads to reduced employment opportunities and wages. Nonetheless, reallocating
tasks from the country’s workers to automated systems or foreign workers may
also promote production efficiency, which in turn allows production activities to
expand with a beneficial impact on employment opportunities and wages. This is
the positive “productivity effect”, which may cause employment and wages to rise.

With regard to the substitution effect, existing studies mainly focus on the
impact of automation on capital-labor substitution, which is particularly relevant
for the adoption of robots and machines in production. They have highlighted
that different workers are affected differently depending on their education
(“skill-biased technological change”) or the routineness of their tasks
(“routine-biased technological change”).

In the present chapter we have investigated the possible existence of an addi-
tional negative effect of automation on workers’ employment opportunities and
wages. As automation intensifies, specialized knowledge (“core competencies”)
becomes increasingly salient above and beyond what would be needed by the
education content of tasks or their degree of routineness. As a result, workers
and firms become more selective in matching their specialized skills and
tasks. We have called this aspect of automation “core-biased technological
change” (CBTC), and argued that something similar could be relevant also
for offshoring: the more sophisticated a country’s global value chains are, the
more crucial may be the contribution of specialized knowledge by the country’s
workers.
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We have looked for evidence consistent with CBTC in occupational data for
European industries. We have found that automation reduces employment
opportunities. More interestingly for the purposes of our analysis, automation
also increases workers’ and firms’ selectivity as captured by longer unemployment
duration, less skill-task mismatch, and more concentration of specialized knowl-
edge in specific tasks. This does not happen in the case of offshoring, though off-
shoring reinforces the effects of automation.

We have shown that a labor market model with two-sided heterogeneity and
search frictions can rationalize our empirical findings as long as one is willing to
assume that better matches between firms and workers have a comparative advan-
tage in exploiting automation, worse matches between firms and workers have a
comparative advantage in exploiting offshoring, and matches with a higher
degree of automation have a comparative advantage in exploiting offshoring.
Directly testing these properties has not been possible with the occupational
data used in this chapter, and we leave it to future research exploiting matched
employer-employee data with detailed information in skills and tasks.
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A Data Description

We use the annual files of the European Labour Force Survey (EULFS) made
available by Eurostat. This survey combines labour force surveys conducted at
the national level in European countries. It has the advantage to provide harmo-
nized information on basic labour markets variables. Our final database corre-
sponds to country × industry × occupation × year cells. The information on the
sector is based on the broad NACE sectors (21 sectors in the NACE Rev.2 clas-
sification) and the information on the occupation is based on the 3-digits ISCO-
88 classification. The EULFS is used to derive the number of employed and
unemployed workers in each cell by collapsing individual observations using
the provided weighting coefficients. We also use the EULFS to compute the
unemployment duration in each cell.

Construction of the variables We keep the employed people as defined by
the ILO criteria and derived by Eurostat. It is less common to compute unem-
ployment at the sector × occupation level since workers can be mobile across
sectors and occupations. We define unemployment in a given sector and a
given occupation as the number of unemployed people who had this precise
occupation in this precise sector. This measure corresponds to the true and
unobservable unemployment rate at the sector × occupation level if workers do
not move across sectors and occupations.

Dataset selectionWe restrict our dataset to the 13 following countries: Austria,
Belgium, Germany, Denmark, Spain, France, United Kingdom, Greece, Ireland,
Italy, Luxembourg, Netherlands and Portugal. This group of countries corre-
sponds to all countries that provided data at least from 1995. It is important to
note that France and the Netherlands do not provide enough information to
compute the unemployment rate at the cell level. Following Goos, Manning
and Salomons (2014), we also drop the following industries: Agriculture, For-
estry, Fishing (A); Mining and Quarrying (B), Public Administration and
Defence and Compulsory Social security (O); Education (P) and Extra-territorial
organizations and bodies (U). These sectors corresponds to public sectors and
agricultural sectors. They account for 26% of all jobs in our sample. The following
occupations, closely associated to the sectors deleted are also dropped from the
sample: Legislators and senior officials (ISCO-88: 11); teaching professionals
(ISCO-88: 23); teaching associate professionals (ISCO-88: 33); market-oriented
skilled agricultural and fishery workers (ISCO-88: 61); agricultural, fishery and
related labourers (ISCO-88: 92).29 Finally, our data contains information, virtu-
ally complete, at the cell level for 92 occupations, in 16 sectors.

Table 4.A1 sums up the coverage of our database relative to official statistics.
According to official Eurostat statistics, we cover around 70% of the employment
in each country, except for Luxembourg for which we only cover 58.5% of the
employment. This is due to the fact that Luxembourg is a small country with
a large institutional sector driven by the presence of some European institutions.
Our coverage of unemployment is a bit less precise, going from 36.2% of official
unemployment numbers in Italy to 69.6% in Denmark. This is principally due to
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the lack of precise reporting of the last job for unemployed people and to
dropped industries. Especially the coverage is very low for Portugal in 1995
(around 10%).

The time frame of our analysis corresponds to 1995–2010 in order to include
the maximum number of countries. Our analysis stops in 2010 because after this
date, a change in the occupation classification (ISCO-88 to ISCO-08) prevents
us from accurately representing changes in the time series.

A.1 Offshorability

Three different measures of offshorability are proposed in the literature: by Blinder
(2009), by Blinder and Krueger (2013, hereafter BK) and by Acemoglu and Autor
(2011, hereafter AA). In the first two cases, the authors propose a qualitative scale
of offshorability, ranking occupations from “Highly Non-Offshorable” (1) to
“Highly Offshorable” (4) following Blinder (2009). Blinder then proposes a qual-
itative ranking of occupations according to their degree of offshorability. BK only
provide 4 categories. AA propose a quantitative index of offshorability based on
ONET. 30 Their measure aggregates several ONET indicators: Face to face discus-
sions, Assisting and Caring for Others, Performing for or Working Directly with
the Public, Inspecting Equipment, Structures, or Material, Handling and Moving
Objects, 0.5*Repairing and Maintaining Mechanical Equipment, 0.5*Repairing
and Maintaining Electronic Equipment.

While Blinder and BK measures are based on questionnaires and qualitative
observations about offshorability; the AA measure is not. The two types of mea-
sures are likely to diverge for some occupations. In Table 4.A2, we compute the
correlation coefficient between these measures. The correlation between Blinder
and BK indices is large while for both indices the correlation with the AA
measure is quite low.

Table 4.A1 Database Coverage (in % of official Eurostat figures)

Country # of employees # of unemployed workers

Austria 70.9% 56.1%
Belgium 70.5% 51.5%
Germany 75.4% 62.3%
Denmark 73.3% 69.6%
Spain 70.5% 61.1%
France 69.1% -

United Kingdom 74.2% 59.8%
Greece 61.1% 42.3%
Ireland 66.5% 51.1%
Italy 71.8% 36.2%

Luxembourg 58.5% 44.0%
Netherlands 68.0% -
Portugal 69.8% 38.6%
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For instance, Models, Salespersons and Demonstrators (code 52) is an occu-
pation classified among the five most offshorable occupations according to the
AA index while it is ranked as Highly Non-Offshorable by Blinder (2009).
Teaching professionals (code 23) are also in the same situation. On the contrary,
Machine operators and assemblers (code 82) are ranked as offshorable in Blinder
(2009) while being ranked as a low offshorability activity by the AA index.

In their data appendix Goos, Manning and Salomons (2014) compare differ-
ent offshorability index with actual offshorability measures. Blinder/BK types of
measures seem more reliable. We consider these two measures as our preferred
ones, using the BK index in our baseline regressions.

A.2 Automatability

We proxy the probability of future automation of an occupation using the RTI
measure constructed by Autor and Dorn (2009). This measure correlates with
the one provided by Frey and Osbourne (2013). Using the files by Acemoglu
and Autor (2011) and the definition of the RTI by Lewandowski et al. (2017)
we compute the RTI index based on DOT data.31 The measure of the RTI is
standardized in order to have a mean of zero and a standard error of one. We
use a crosswalk to go from SOC 2000 classification to 4-digit ISCO-88 classifi-
cation and then aggregate it to the 3-digit ISCO-88 classification. At this level
the correlation between the RTI (“routineness”) and measure by Frey and
Osborne (“probability of automation”) is 0.77 (see Figure 4.A1). However,
the two variables diverge for some occupations.

To assess the evolution of routine jobs across countries and industries, Dao et
al. (2017) also use an index of “routineness” fixed for the nine 1-digit ISCO-88
occupations. They then assume that the partition of jobs within 1-digit ISCO
occupations is fixed among countries, industries and time. We relax this assump-
tion by only assuming that the RTI of a 3-digit ISCO occupation is fixed. This
way we are able to observe the evolution in the automatability by country, indus-
try and occupation.

A.3 Relation Between Offshorability and Automatability

In this subsection we document that automatability and offshorability are not
trivially correlated. First, conceptually the two concepts are different. Offshor-
ability is defined as “the ability to perform one’s work duties (for the same

Table 4.A2 Correlation Table between Offshorability Measures

AA (2011) Blinder (2009) BK (2013)

Acemoglu-Autor (2011) 1 –
Blinder (2009) 0.34 1 –
Blinder-Krueger (2013) 0.25 0.94 1
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employer and customers) in a foreign country but still supply the good or service
to the home market” (Blinder and Krueger, 2009) while the automatability is
more strictly linked to the routineness of a task, its possibility to be solved algo-
rithmically, etc. Figure 4.A2 documents the correlation between the two variables.
There is a global positive correlation, but the figure also highlights the diversity of
RTI/offshorability combinations. Especially some occupations are both offshor-
able and routine-intensive (42: Customer service clerks; 73: Precision, handicraft,
printing and related trades workers; 74: Other craft and related trade workers; 81:
Stationary-plant and related operators; 82: machine operators and assemblers).
Others are not routine intensive but offshorable (21: Physical, mathematical
and engineering science professional) while some are protected from offshorability
but at risk of automation (83: Drivers and mobile-plant operators; 91: sales and
services elementary occupations; 93: labourers in mining, construction, manufac-
turing and transport). Finally, some occupations are both protected from automa-
tion and from offshorability (12: corporate managers; 13: general managers; 22:
life science and health professionals). Note, however, that the scope of occupa-
tions that are not routine intensive but offshorable is very limited.

A.4 Merging Procedure

Our matching strategy could be decomposed as follows: i) We only keep the
observations before 2011, ii) we compute the RTI for each 4-digit ISCO-88
using official crosswalks, iii) we average the probabilities of automation when
many SOC occupations are matched into a single ISCO occupation, iv) we
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take the unweighted average probability of automation to aggregate our measure
at the 3-digit ISCO-88 levels, v) we match each occupation with its RTI, vi) we
proceed in the same way to assign RTI and offshorability indexes to occupation
reported at the 2-digit ISCO level. Finally, when necessary, we obtain the
measure of routine task intensity and offshorability at the 2-digit ISCO level
by collapsing (with appropriate weights) all observations at the 3-digit level in
their corresponding 2-digit ISCO occupation.

B Model Solution

This Appendix provides a detailed derivation of (10), (11) and (12) in the main
text. The steady state equilibrium is characterized by the following equations:

Surplus function:

s(d;A;O) = FB
1

1-b(1-A)(1- O) 1

4
F (1+A)(1+ O)-

{
(16)

1

4
[ga(1+A) + go(1+ O)]d

}
;

(17)
where we occasionally omit the dependence on A and Ω for brevity.
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Matching function:

M (U ;V ) = WU xV 1-x: (18)

Resource constraint:

E +U = L = 1: (19)

Flow condition:

2d*M (U ;V ) = dE: (20)

Meeting probabilities:

qv = M (U ;V )=V = W U=V( )x: (21)

qu = M (U ;V )=U = W V =U( )1-x
: (22)

Optimality conditions:

rvE(d) = w(d) - d vE(d) - vU( ); (23)

rvP(d) = s(d) - w(d) - c( ) - d vP(d) - vv( ); (24)

rvU = 2qu

{ d*

0

vE(z) - vU( )dz; (25)

rvV = -c + 2qv

{ d*

0

vP(z) - vV( )dz: (26)

Bargaining outcome:

1- α( ) vE(d) - vU( ) = α vP(d) - vV( ): (27)
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Free entry condition:

vV = 0: (28)

Zero cutoff value condition:

vP(d*) = 0: (29)

From this system of 13 equations in 13 unknowns (E, U, V, M, qv, qu, w, vE, vp,
vU, vV, s, d*), (10) and (11) can be obtained as follows. Subtract (25) from (23)
to obtain:

{ d*

0

vE(z) - vu( )dz =

{ d*

0

w(z)dz
r+ d+ 2qu(y)

:
(30)

Subtract (26) from (24) to obtain:

{ d*

0

vP(z) - vV( )dz =

{ d*

0

s(z) - w(z)( )dz
r+ d+ 2qv(y)

:
(31)

Substitute into the integral of (27)

1- α( )
{ d*

0

vE(z) - vU( )dz = α
{ d*

0

vP(z) - vV( )dz (32)

to obtain:

w(z) = α d+ r+ 2qu(y)( )s(z)
d+ r+ 1- α( )2qv(y) + α2qu(y)

: (33)

Substitute (27) into (26) to obtain:

rvV = -c + 2qv(y)
1- α
α

{ d*

0

vE(z) - vU( )dz: (34)

Substitute (33) into (30) to obtain:

{ d*

0

vE(z) - vu( )dz =
α
{ d*

0

s(z)dz
d+ r+ 1- α( )2qv y( ) + α2qu y( ) :

(35)
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Hence (34) and (35) imply:

rvV = -c +
1- α( )2qv(y)

{ d*

0

s(z)dz
d+ r+ 1- α( )2qv y( ) + α2qu y( )

(36)

Using (20) and (19) in (22) gives:

qu =
M (U ;V )

U
= dE

2d* L - E( ) : (37)

Using (20) and (19) gives

V = dE
2d*WU x

( ) 1
1-x

;

which, once substituted into (21), gives:

qv = W
1

1-x dE( )- x
1-x L - E( )

x
1- x(2d*)

x
1- x; (38)

or equivalently

qv = W
1

1-x qu( )- x
1-x: (39)

Substituting (39) into (33) gives (12) in the main text:

w(d) = α d+ r+ 2qu( )
d+ r+ 2 1- α( )W 1

1-x qu( )- x
1-x + 2αqu

s(d):

Now substitute (39) into (36) to obtain:

rvV = -c +
2 1- α( )W

1

1- x qu( )- x
1-x

{ d*

0

s(z)dz

d+ r+ 2 1- α( )W
1

1- x qu( )- x
1-x + 2αqu

: (40)
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Hence using the free entry condition vv = 0, (40) becomes:

2 1- α( )W 1
1-x qu( )- x

1-x

{ d*

0

s(z)dz

d+ r+ 2 1- α( )W 1
1-x qu( )- x

1-x + 2αqu
= c; (41)

which is (10) in the main text where (17) implies:{ d*

0

s(x;A;O)dx = FB
1

1-b 1-A( ) 1- O( ) 1
4
d*

F 1+A( ) 1+ O( ) - 1

2
ga 1+A( ) + go 1+ O( )[ ]d*

{ }

Finally, substitute the free entry condition and (29) into (24) to obtain

w(d*) = s(d*) - c;

which, together with (17) evaluated at d*

w(d*) = α d+ r+ 2qu( )s(d*)
d+ r+ 2 1- α( )qv + 2αqu

;

gives:

1- α( ) d+ r+ 2qv
d+ r+ 2 1- α( )qv + 2αqu

s(d*) = c:

Substituting (39) gives:

1- α( ) d+ r+ 2W
1

1-x qu( )- x
1-x

d+ r+ 2 1- α( )W 1
1-x qu( )- x

1-x + 2αqu
s(d*) = c; (42)

which is (11) in the main text where

s(d*;A;O) = FB
1

1-b 1-A( ) 1- O( )
1

4
F 1+A( ) 1+ O( ) - 1

4
ga 1+A( ) + go 1+ O( )[ ]d*

{ }

and

qu =
dE

2d* 1- E( ) :

given L = 1.

C Parameter Values

Table 4.C1 reports the parameter values used in Section 4
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Hanson, Erik Hurst, Nir Jaimovich, Juan F. Jimeno, Marianna Kudlyak, Sang Yoon
Lee, Yaniv Yedid-Levi, Alan Manning, Nicolas Pedrosky-Nadeau, Pascual Restrepo,
Florian Scheuer, and Chris Tonetti and participants at various conferences and sem-
inars for useful comments.

1 See, for example, Autor and Dorn (2009), Ottaviano, Peri and Wright (2013),
Goos, Manning and Salomons (2014), Graetz and Michaels (2018), Acemoglu
and Restrepo (2020a), Dauth et al. (2017) on the empirical side; Acemoglu and
Autor (2011), Aghion, Jones and Jones (2017), Acemoglu and Restrepo
(2018b) and Acemoglu and Restrepo (2018a), Caselli and Manning (2019) on
the theoretical one. Most of these studies tend to focus more on the effects of
either automation or globalization (for instance Grossman and Rossi-Hansberg,
2008, Costinot and Vogel, 2010 or Costinot, Vogel and Wang, 2012) than on
their interactions. Empirical assessments of their simultaneous effects across US
regions can be found, for example, in Autor, Dorn and Hanson (2013, 2015)
and with a global perspective, both theoretically and empirically, in, for example,
Arkolakis et al. (2018).

2 See, for instance, Acemoglu and Restrepo (2018b) and Acemoglu and Restrepo
(2018a) and, on employment, also Bostrom (2014), Brynjolfsson and McAfee
(2014), Goos, Manning and Salomons (2014), Ford (2015), Susskind and Sus-
skind (2015), White House (2016), Stone (2016), Frey and Osbourne (2013),
Caselli and Manning (2019), Acemoglu and Restrepo (2019), Acemoglu,
Lelarge and Restrepo (2020), and Acemoglu and Restrepo (2020b) and
Fornino and Manera (2019) regarding the reversability of capital investments.

3 See Section 2 for concrete examples.
4 See, e.g., Grossman and Rossi-Hansberg (2008), Costinot and Vogel (2010),

Ottaviano, Peri and Wright (2013), Goos, Manning and Salomons (2014).

Table 4.C1 Parameters

Parameter Description Value

α Bargaining Weight 0.5
ρ Patience 0.04
δ Per-period Separation Shock 0.05
ξ Matching Function Elasticity 0.5
W Matching Function Constant 0.4
β Capital share in CB 0.33
c Vacancy Cost 1
F Max. Productivity 115
B Factor Aug. Technology 25.5
γA Mismatch penalty A 115
γB Mismatch penalty Ω -53

Notes: Table 4.C1 shows parameter values used for the numerical example in the main text.
Parameter values are standard values drawn from Hagedorn, Law and Manovskii (2017)
except for the mismatch penalty parameters whose values have been chosen in order to
deliver empirically relevant equilibrium rates of employment. As we do not model
endogenous separations we choose a higher separation rate compared to Hagedorn, Law and
Manovskii (2017) and closer to Fujita and Ramey (2012).
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5 For example, in the offshoring model by Antras, Garicano and Rossi-Hansberg
(2006), cross-country hierarchical teams are formed where less skilled countries
specialize in production and more skilled countries specialize in problem
solving. In the model of global value chains by Antras, Garicano and Rossi-Hans-
berg (2006), in which production of the final good is sequential and subject to
mistakes, countries with lower probabilities of making mistakes at all stages spe-
cialize in later stages of production.

6 In the wake of Costinot and Vogel (2010) the underlying idea is that, while a
sector may cover a rich menu of occupations, these include a submenu of
“core occupations” that are disproportionately concentrated in the sector.

7 The 2018 Talent Shortage Survey by ManpowerGroup covers 39,195 employers
across six industry sectors in 43 countries and territories: Argentina, Australia,
Austria, Belgium, Brazil, Bulgaria, Canada, China, Colombia, Costa Rica, Czech
Republic, Finland, France, Germany, Greece, Guatemala, Hong Kong, Hungary,
India, Ireland, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Norway,
Panama, Peru, Poland, Portugal, Romania, Singapore, Slovakia, Slovenia, South
Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, UK and USA.

8 In spring 2014 the European Centre for the Development of Vocational Train-
ing of the European Union (Cedefop) undertook the first European skills and
jobs survey (ESJS), a large-scale primary data collection of about 49,000 adult
employees in 28 EU Member States. Cedefop Eurofound (2018) summarizes
many of the insights gained by closer empirical scrutiny of this new European
data set.

9 Koren, Csillag and Köllo (2020) also find that the productivity of workers
assigned to new machines rises and their wages increase but become more
unequal.

10 Following Goos, Manning and Salomons (2014), occupations and sectors closely
associated with public and agricultural activities are dropped. We also drop 3-
digit ISCO occupations that are not precisely reported. These occupations are
dropped from the final sample. This corresponds to 1.1% of total hours
worked in the sample and this only affects six countries in the sample.

11 For instance, Chiacchio, Petropoulos and Pichler (2018) shows that robot pen-
etration in the EU28 has tripled over this period and particularly between 1995–
2007 relative to the years 2007–2015. A similar pattern can be observed for off-
shoring as measured by foreign direct investment and intermediates trade in the
WTO and UNCTAD statistics.

12 We follow the definition of Lewandowski et al. (2017): RTIo = ln(Routine Cog-
nitiveo+ Routine Manualo)−ln(Non-Routine Analyticalo+ Non-Routine Interper-
sonnalo). Throughout we standardize RTI to have a mean equal to zero and a
standard deviation of one.

13 The measure used by Frey and Osbourne (2013) builds on the selection of solu-
tions that engineers need to devise for specific occupations to be automated and
it is given by the probability of computerization based on a Gaussian process
classifier.

14 The index of Blinder (2009) is constructed in the same way, but it reports a qual-
itative ranking of occupations according to their degree of offshorability.

15 We obtain data from the Princeton Data Improvement Initiative (https://
krueger.princeton.edu/pages/princeton-data-improvement-initiative-pdii). The
matching procedure of occupations with our automatability and offshorability
indices is detailed in Appendix A. Throughout we standardize the BK index to
have a mean equal to zero and a standard deviation of one.

16 We aggregate our data at the cell level (country × sector × occupation × year) into
occupation × year cells and for each occupation we compute the log change in
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hours worked across the countries in our sample: Dln Hourso( ) =
ln Hours2010o

( )- ln Hours1995o

( )
.

17 The paper by Bonfiglioli, Crinò, Gancia, and Papadakis (2021) in this volume
studies the effect of imported industrial robots on US local labor markets between
1990 and 2015, unveiling empirical patterns consistent with “reshoring” whereby
imported robots substitute foreign workers more than US workers. Related to
our Figure 4.1, after classifying occupations in terms of their “replaceability”
(by robots) and “offshorability”, they show in their Table 5 that the employment
changes in non-replaceable occupations are uncorrelated with robot exposure
regardless of offshorability. This holds also for replaceable occupations if they
are also offshorable, whereas the correlation is negative if they are non-offshorable.
It should be noted, however, that, while in a robustness check they measure “off-
shorability” as we also do, our measure of “automatability” based on routine
intensity as in Acemoglu and Autor (2011) is quite different from their measure
of “replaceability” based on robot application categories as in Graetz andMichaels
(2018). Moreover, “reshoring” seems to be less relevant in Europe than in the US
(De Backer et al., 2016; Kinkel, Dewanti and Zimmermann, 2017; Vanchan,
Mulhall and Bryson, 2018).

18 The results on educational mismatch may resonate with the implications of tradi-
tional models of SBTC, but there is a crucial difference. In those models the
demand of workers with higher education rises and the demand of workers with
lower education falls in occupations more exposed to technological change. Yet,
typically this is not connected to the evolution of over/under education.

19 Matches are one-worker-one-job relationships, and therefore we do not consider
the complementarities between workers within the same firm as in Eeckhout and
Kircher (2018). While complementarities within the firms are certainly impor-
tant, they are not immediately relevant for our purposes.

20 In the absence of search or information frictions all workers and firms would be
matched to their optimal partner as in Becker (1973).

21 See Mortensen and Pissarides (1994). Our assumption departs from the non-
linear matching function employed in models with two-sided heterogeneity à
la Shimer and Smith (2000). In particular, our matching technology implies
that congestion externalities arise for each task.

22 If the outside option were positive, workers would simply search for longer
periods of time.

23 See Appendix B for detailed derivations.
24 While we do not dwell on the determination of A and Ω, it would be straightfor-

ward to explicitly endogenize them by specifying the costs of automation and off-
shoring. Most naturally, A and Ω would be determined as decreasing functions of
those costs. Compative statics results would then be stated with respect to the
cost parameters driving the choice of A and Ω rather than with respect to A
and Ω. As this would not add much insight to the analysis, we prefer to keep
the costs of automation and offshoring in the background and discuss the com-
parative statics with respect A and Ω.

25 See Appendix C for additional details.
26 To give some idea about the quantitative consistency of the calibrated model

with the motivating evidence, consider deviations from point A = 0.2 and Ω =
0.2 in the left panel of Figure 4.2 (i.e. black line). Increasing A to 0.35 corre-
sponds to an increase in concentration of 8% comparable to the estimated
increase of 8% in response to a 1 standard deviation increase in automatability
(RTI) reported in Table 4.2. Similarly, in the right panel of Figure 2 increasing
Ω to 0.35 (with A = 0.2) translates to a 17% decrease in selectivity in the model
which is comparable to the estimated 12% drop in SSO in response to a 1 standard
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deviation increase in offshorability. Similarly, consider decreasing A from 0.2 to
0.05, that is moving from the black to the dotted line in the right panel of Figure
4.2, while keeping Ω = 0.35: selectivity decreases by roughly 30% relative to the
case of A = 0.2 and Ω = 0.2. This is comparable to empirically predicted drop in
SSO by 27% when offshorability increases and automatability decreases by 1 stan-
dard deviation respectively. A similar exercise based on unemployment duration
in Figure 4.3 reveals that the magnitude of the model’s predictions roughly aligns
with the estimated effects; mapping over- and under-education to a suitable
model-analogue for interpretation is, however, difficult.

27 For instance, the left panel of Figure 4.5 clearly shows that, after denoting equi-
librium employment by E(A, Ω), for A

'
> A and Ω

'
> Ω with Ω = 0.05 and Ω

'
=

0.2, we have E(A
'
, Ω

'
)/E(A

'
, Ω)>E(A, Ω

'
)/E(A, Ω). This derives from the fact

that E(A, Ω
'
) is a flatter function of A than E(A, Ω). While less visible, the

same applies to the right panel.
28 For instance, the left panel of Figure 4.6 clearly shows that, after denoting the equi-

librium wage ratio byW(A, Ω), for A
'
> A and Ω

'
> Ω with Ω = 0.05 and Ω

'
= 0.2,

we have W(A
'
, Ω

'
)/W(A

'
, Ω)>W(A, Ω

'
)/W(A, Ω). While less visible, the same

applies to the right panel of Figure 4.6. In Figure 4.6 the wage of the best
match is an order of magnitude larger than the wage of the worst match. While
this gap between the two extremes of the wage distribution may look unrealistically
large, comparing the 75% and 25% percentiles reveals that the wage in the former
percentile is only about twice as large as that in the latter percentile.

29 These occupations respectively account for 0.12%, 0.27%, 0.53%, 0.39% and
0.07% observations in the sectors kept.

30 This index is inspired by Firpo, Fortin and Lemieux (2011)
31 Lewandowski et al. (2017) slightly modify the RTI definition compared to Autor and

Dorn (2009) in order to adapt it to the use of ONET data instead of DOT data:
RTI = ln(Routine Cognitive + Routine Manual)−ln(Non-Routine Analytical +
Non-Routine Interpersonnal).
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